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The classic paper by Harten, Engquist, Osher, and Chak- By carefully designing such limiters, the TVD (total varia-
tion diminishing) property could be achieved for nonlinearravarthy on ENO schemes [1] has had a tremendous influ-

ence on research in numerical solutions of hyperbolic con- scalar one-dimensional problems. One disadvantage of this
approach is that accuracy necessarily degenerated to firstservation laws since its publication.

The original and beautiful idea of this paper is a uni- order near smooth extrema.
The ENO idea proposed in [1] is the first successfulformly high-order interpolation recipe with an adaptive

stencil, termed ENO (Essentially Non-Oscillatory) recon- attempt to obtain a uniformly high-order accurate, yet
essentially non-oscillatory, interpolation (i.e., the magni-struction. It is well known that the wider the stencil, the

higher the order of accuracy of the interpolation, provided tude of the oscillations decay as O(hr), where r is the order
of accuracy) for piecewise smooth functions. The genericthe function being interpolated is smooth inside the stencil.

Traditional finite difference methods are based on fixed solution for hyperbolic conservation laws is in the class of
piecewise smooth functions. The reconstruction in [1] is astencil interpolations. For example, to obtain an interpola-

tion for cell i to third-order accuracy, the information of natural extension of an earlier second-order version of
Harten and Osher [2]. In [1], Harten, Engquist, Osher,the three cells i 2 1, i, and i 1 1 can be used. This works

well for globally smooth problems. The resulting scheme and Chakravarthy investigated different ways of measuring
local smoothness to determine the local stencil, and devel-is linear for linear PDEs; hence stability can be analyzed

by Fourier transforms. However, fixed stencil interpolation oped a hierarchy that begins with one or two cells, then
adds one cell at a time to the stencil from the two candi-of second- or higher-order accuracy is necessarily oscilla-

tory near a discontinuity. Such oscillations (called the dates on the left and right, based on the size of the two
relevant Newton divided differences. This seems to be theGibbs phenomenon in spectral methods) do not decay in

magnitude when the mesh is refined. It is a nuisance to most robust way for a wide range of grid sizes, h, both
before and inside the asymptotic regime.say the least for practical calculations, and often leads to

numerical instabilities in nonlinear problems containing As one can see from the numerical examples in [1] and
in later papers, ENO schemes are indeed uniformly high-discontinuities.

Before 1987, there were two common ways to eliminate order accurate and resolve shocks with sharp and mono-
tone (to the eye) transitions. ENO schemes are especiallyor reduce such spurious oscillations near discontinuities.

One way was to add an artificial viscosity. This could be suitable for problems containing both shocks and compli-
cated smooth flow structures, such as occur in shock inter-tuned so that it was large enough near the discontinuity

to suppress, or at least to reduce, the oscillations, but was actions with turbulent flow.
This paper of Harten, Engquist, Osher, and Chakra-small elsewhere to maintain high-order accuracy. One dis-

advantage of this approach is that fine tuning of the param- varthy [1] has been cited 144 times, according to the ISI
database. The original authors and many other researcherseter controlling the size of the artificial viscosity is problem

dependent. Another way was to apply limiters to eliminate have followed the pioneer work of [1], improving the meth-
odology and expanding the area of its applications. ENOthe oscillations. In effect, one reduced the order of accuracy

of the interpolation near the discontinuity (e.g., using a schemes based on point values and TVD Runge–Kutta
time discretizations, which can save computational costslinear rather than a quadratic interpolant near the shock).
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